Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668447

RESUMEN

The spread of antibiotic-resistant Enterococcus in the poultry industry poses significant public health challenges due to multidrug resistance and biofilm formation. We investigated the antibiotic resistance profiles and biofilm characteristics of E. faecalis and E. faecium isolates from chicken meat in poultry slaughterhouses in South Korea. Ninety-six isolates (forty-eight each of E. faecalis and E. faecium) were collected between March and September 2022. Both species were analyzed using MALDI-TOF, PCR, antibiotic susceptibility testing, and biofilm assays. A high level of multidrug resistance was observed in E. faecalis (95.8%) and E. faecium (93.8%), with E. faecium exhibiting a broader range of resistance, particularly to linezolid (52.1%) and rifampicin (47.9%). All E. faecalis isolates formed biofilm in vitro, showing stronger biofilm formation than E. faecium with a significant difference (p < 0.001) in biofilm strength. Specific genes (cob, ccf, and sprE) were found to be correlated with biofilm strength. In E. faecium isolates, biofilm strength was correlated with resistance to linezolid and rifampicin, while a general correlation between antibiotic resistance and biofilm strength was not established. Through analysis, correlations were noted between antibiotics within the same class, while no general trends were evident in other analyzed factors. This study highlights the public health risks posed by multidrug-resistant enterococci collected from poultry slaughterhouses, emphasizing the complexity of the biofilm-resistance relationship and the need for enhanced control measures.

2.
Viruses ; 16(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38400060

RESUMEN

Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.


Asunto(s)
Charadriiformes , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Filogenia , Aves
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...